Municipal Wastewater Treatment Systems and their Future Role in Efficient and Sustainable Energy Systems

Kerstin Schopf
INTRODUCTION

“To combat climate change it is necessary to establish efficient and sustainable energy systems within the energy transition.”
INTRODUCTION

CONTROLLED UNIT / ENERGY SERVICE PROVIDER

ENERGY SERVICES OF WASTEWATER TREATMENT PLANTS...
- Constant electric or thermal energy supply
- Frequency reserve

POTENTIAL DEPENDS ON...
- The energy intensive units,
- The amount of bioenergy potentials → digester gas and sewage sludge
- The storage possibilities
- The flexible useable units.

Reference (7)
Methodology

- Energy demand = ?
- Amount of bioenergy potentials = ?

Mass and Energy Balances of Waste Water Treatment Plants

- Depend on...
 - Plant size
 - Treatment technology
 - Sewage composition
METHODOLOGY

STEP 1: Non-time-resolved mass and energy balances

Modular structure for considering different plant configurations

- Excel-based data collection
- Calculation of all treatment processes up to the dewatering unit
- Focus on aerobic and anaerobic treatment plants
- Standardized formulary
METHODOLOGY

- Integration of bioenergy potentials = ?

DECENTRALISED ENERGY PRODUCTION ON-SITE

- Analysing the potential for supplying electric and thermal energy by digester gas and sewage sludge utilisation
- Role as energy service providers in medium- and low-voltage grids
Methodology

STEP 2: Designing energy networks

Expansion of the non-time resolved modular tool

- Digester gas utilisation by CHP-units, micro gas turbines or gas boilers
- Sewage sludge utilisation by combustion or gasification
- No state-of-the-art technology

Assumptions:
- 8,000 operating hours
- Compatibility
- Optimal output quality

Cooperation partner:

![Sülzle Kopf Logo](image-url)
METHODODOLOGY

- **Optievlex**

 1. Step 1: Non-time-resolved mass and energy balances
 2. Step 2: Identification of optimal energy networks
 3. Step 3: Daily dry weather load- and production profiles
 4. Step 4: Maximum flexibility range

TIME-RESOLVED LOAD AND PRODUCTION PROFILES

- Identifying real interaction possibilities with medium- and low voltage grids
METHODODOLOGY

STEP 3: Daily dry weather load- and production profiles

Expansion of the EXCEL-Tool by a time-resolved inflow model via MATLAB

- Dry weather inflow model of the “Hochschulgruppe Simulation”
- Transferred to a MATLAB script

Dry weather inflow \([m^3/h]\)
(100,000 PE)

- Inflow quantity \([m^3/h]\)
- Time \([h]\)

Sewage Composition \([g/m^3]\)
(100,000 PE)

- Concentration \([g/m^3]\)
- Time \([h]\)
Methodology

- **Flexible useable units = ?**
- **Flexibility potential = ?**

Maximum Flexibility Range

- Identifying the maximum flexibility potentials of a waste water treatment plant by constant purification performance
METHODODOLOGY

STEP 4: Maximum flexibility range

Five decisive factors concerning the flexibility potential

- High electric and thermal energy self-sufficiency
- Minimal available power
 - Low-voltage grids: > 5 kW
 - Medium-voltage grids: > 50 kW
- Deactivation time and responds speed of the units
 - Respond speed: max. 5 minutes
 - Deactivation time: min 15 minutes
- Full-load hours of the units
- Availability of storage possibilities for digester gas and sewage sludge

→ Pump station, blower sand trap, blower aeration tank, recirculation pump, return sludge pump, CHP-units
Methodology

Standalone application **OPTIEVLEX**

“**Optimierte Energieverbunde kommunaler Abwasserbehandlungsanlagen als Flexibilitätsbausteine in den kommunalen Netzen der Zukunft**”
METHODOLOGY

Standalone application OPTIEVLEX

Enables to...

- Time-resolved and Non-time-resolved simulations
- Calculation of the mass and energy balances of user-defined waste water treatment system configurations
- Determination of the energy self-sufficiency
- Estimation of load and production profiles
- Derivation of maximum flexibility ranges

6. Get results
RESULTS

• Energy self-sufficiency is important parameter concerning the flexibility potential

• Mass and energy balances of different plant configurations:
 - Configuration 1: Anaerobic WWTP + Digester gas CHP-unit
 - Configuration 2: Anaerobic WWTP + Digester gas CHP-unit + LT-Belt-dryer
 - Configuration 3: Anaerobic WWTP + Digester gas CHP-unit + LT-Belt-dryer + Gasification + Syngas CHP-unit
RESULTS AFTER STEP 2 - ELECTRIC ENERGY SELF-SUFFICIENCY

Output of a static simulation with OPTIEVLEX

- Average system units and different plant capacities
- Austrian effluent limit values

Configuration 1: Anaerobic WWTP + Digester gas CHP-unit
Configuration 2: Anaerobic WWTP + Digester gas CHP-unit + LT-Belt-dryer
Configuration 3: Anaerobic WWTP + Digester gas CHP-unit + LT-Belt-dryer + Gasification + Syngas CHP-unit
OUTLOOK FOR STEP 3

STEP 3: Daily dry weather load- and production profiles

• Generating a data pool by performing static simulations via OPTIEVLEX
 ▫ Several waste water treatment system configurations
 • Aerobic treatment plants with gasification and combustion units
 • Combustion with/without ORC-Process
 • Gasification with a Syngas utilisation in a CHP-Unit or heating boiler
 ▫ Different plant capacities

• Simulation of daily load- and production profiles
OUTLOOK FOR STEP 4

STEP 4: Maximum flexibility range

Five decisive factors concerning the flexibility potential

- High electric and thermal energy self-sufficiency
- Minimal available power
- Deactivation time and responds speed of the units
- Full-load hours of the units
- Availability of storage possibilities for digester gas and sewage sludge

Daily load profile [kW] (100.000 PE)

Maximum flexibility range [kW] (100.000 PE)

Positive flexibility = Load reduction + Production increase

Negative flexibility = Load increase + Production reduction
OUTLOOK FOR OPTIEVLEXPLUS

- Actual flexibility potential = ?
- Energy services = ?

YEARLY LOAD— AND PRODUCTION PROFILES BASED ON TYPICAL METEOROLOGICAL DAY

- Identifying the actual flexibility potentials of a waste water treatment plant by constant purification performance
- Stabilization potential within the electric energy grid
THANK YOU FOR YOUR ATTENTION!
REFERENCES

(1) https://www.istockphoto.com/ch/vektor/elektrischen-transformator-symbol-gm899783628-248278168
(2) https://jp.123rf.com/photo_21295788_%E7%99%BD%E3%81%84%E8%83%8C%E6%99%AF%E3%81%AE%E4%B8%8A%E3%81%AE%E5%B7%A5%E5%A0%B4%E3%81%AE%E3%82%A2%E3%82%A4%E3%82%B3%E3%83%B3-%E3%83%99%E3%82%AF%E3%83%88%E3%83%AB-%E3%82%A4%E3%83%A9%E3%82%B9%E3%83%88.html